Product Description
XLD star shaped plum CHINAMFG elastic coupling motor claw type customized high torque coupling
Features:
XLD star-shaped flexible coupling is made of aluminum alloy as bushings and engineering plastic as an elastic element, suitable for connecting the 2 coaxial transmission shaft system.
Similar function as of XL type,but the bore dimension and outer dimension is bigger than XL type.
Technical paramters:
Star Coupling
Model: XLDType
Norminal Torque: 34N. M – 35000N. M
Connection: Shaft hole
Shaft Hole Diameter(d1,d2): 6mm – 220mm
Shaft Hole Length (L): 25mm – 195mm
The elastomer hardness is 92shA
Small dimensions, low weight and low mass moments of inertia yet transmit high torques
Running quality and long service life of the coupling are improved by accurate all-over machining
Their application is ideal for transmitting torque while damping torsional vibrations and absorbing shocks produced by the uneven operation of certain prime movers
Axial plug-in,Maintenance-free, easy assembly, easy to inspect visually
Working temperature -35~80ºC
Failsafe
Same function as CHINAMFG which is made in Germany
The bushing is made of aluminum allory or steel, which is especially suitable for heavy-duty transmission,especially suitable for lifts, rolling mills, construction machinery and Metallurgy, mining, transportation, petroleum, chemical, ships, textile, light industry, agricultural machinery, printing machines and pumps, fans, compressors, machine tools and other mechanical equipment and industry shaft transmission.
Other customized design.
Packing & shipping:
1 Prevent from damage.
2. As customers’ requirements, in perfect condition.
3. Delivery : As per contract delivery on time
4. Shipping : As per client request. We can accept CIF, Door to Door etc. or client authorized agent we supply all the necessary assistant.
FAQ:
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.
Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.
Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.
Q 4: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.
Q 5: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.
Q 6: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Material Selection and Design Durability of Elastic Couplings
The choice of materials for elastic couplings significantly influences their design and overall durability. Material selection affects factors such as flexibility, torsional stiffness, fatigue resistance, and resistance to environmental conditions. Here’s how material selection plays a crucial role:
- Elastomer Material: The elastomer used in elastic couplings determines the coupling’s flexibility, vibration absorption capabilities, and resilience. Common elastomers include natural rubber, synthetic rubber, and polyurethane. The selected elastomer should provide the desired level of elasticity and durability while maintaining its properties over time.
- Hub and Spacer Material: The hubs and spacers of elastic couplings are typically made from metals like steel, aluminum, or alloy materials. These components need to be strong enough to transmit torque while accommodating misalignments and vibrations. The material should also resist wear, corrosion, and fatigue.
- Bolt or Pin Material: Bolts or pins used to connect the hubs and elastomer element must possess sufficient strength to handle the torsional forces and loads. They should be made from materials with high tensile strength and corrosion resistance.
- Environmental Factors: Depending on the application environment, material selection should consider factors such as temperature, moisture, chemicals, and UV exposure. The chosen materials should be able to withstand these conditions without deterioration.
Ultimately, a well-considered material selection enhances the coupling’s durability, operational performance, and resistance to wear, ensuring that the elastic coupling can reliably function under varying conditions and loads.
Contribution of Elastic Couplings to Rotating System Efficiency
Elastic couplings play a significant role in enhancing the overall efficiency of rotating systems by providing various benefits:
1. Vibration Damping: Elastic couplings absorb and dampen vibrations and shocks that arise from the operation of rotating machinery. By minimizing these vibrations, elastic couplings reduce wear and tear on components, leading to smoother operation and extended component lifespan.
2. Misalignment Compensation: Rotating systems often experience misalignments due to factors like thermal expansion, installation errors, or operational conditions. Elastic couplings can accommodate angular, axial, and radial misalignments, ensuring consistent power transmission and reducing stress on connected components.
3. Shock Absorption: In applications with sudden starts, stops, or load changes, elastic couplings absorb and distribute shock loads. This prevents sudden jolts that could damage the machinery or cause mechanical failures.
4. Torsional Vibration Reduction: Elastic couplings help minimize torsional vibrations, which can lead to resonance and cause structural damage. By damping these vibrations, elastic couplings prevent energy loss and ensure smooth operation.
5. Energy Efficiency: The ability of elastic couplings to reduce vibrations, misalignments, and shock loads leads to improved energy efficiency. The machinery experiences fewer energy losses due to internal friction and component stress.
Elastic couplings enhance the reliability, longevity, and performance of rotating systems, ultimately leading to reduced downtime, maintenance costs, and overall operational inefficiencies.
Difference Between Elastic Coupling and Rigid Coupling
Elastic couplings and rigid couplings are two distinct types of couplings used in mechanical designs:
Elastic Coupling: An elastic coupling incorporates an elastomeric material, such as rubber, to provide flexibility and absorb shock and vibration. It allows for misalignment compensation and is ideal for applications where there may be slight misalignment or the need for vibration damping. Elastic couplings are commonly used in machinery that requires smooth operation and reduced stress on connected components.
Rigid Coupling: A rigid coupling, as the name suggests, is designed to provide a solid connection between two shafts. It does not have any flexible or damping elements and is used when precise alignment and torque transmission are critical. Rigid couplings are often used in applications where shafts need to maintain a constant alignment, such as in precision machines and systems with high torque requirements.
The choice between an elastic coupling and a rigid coupling depends on the specific requirements of the mechanical system, including the degree of misalignment, vibration levels, torque transmission, and the overall performance objectives.
editor by CX 2024-04-22